Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Two new cobalt(II) fumarates and a redetermination of tetraaquacobalt(II) fumarate monohydrate

Sándor L. Bekö, ${ }^{\text {a }}$ Jan W. Bats ${ }^{\text {b }}$ and Martin U. Schmidt ${ }^{\text {a* }}$
${ }^{\text {a }}$ Institute of Inorganic and Analytical Chemistry, Goethe University, D-60438 Frankfurt am Main, Germany, and ${ }^{\mathbf{b}}$ Institute of Organic Chemistry and Chemical Biology, Goethe University, D-60438 Frankfurt am Main, Germany
Correspondence e-mail: m.schmidt@chemie.uni-frankfurt.de

Received 24 June 2009
Accepted 31 July 2009
Online 19 August 2009
Poly[triaqua- μ_{4}-fumarato-cobalt(II)], $\left[\mathrm{Co}\left(\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{O}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]_{n}$, (I), contains two symmetry-independent octahedrally coordinated Co^{2+} ions, both on inversion centers. One Co^{2+} ion is coordinated by two water molecules and four fumarate dianions, whereas the other Co^{2+} ion is surrounded by four water molecules and two fumarate dianions. Each fumarate dianion is bonded to three Co^{2+} ions, leading to a twodimensional structure. The fumarate dianions are nonplanar; the angle between the planes of the two carboxylate groups is 54.9 (2) ${ }^{\circ}$. The cobalt(II) fumarate layers are connected by hydrogen bonding into a three-dimensional network. Compound (I) is not isostructural with calcium(II) fumarate trihydrate [Gupta et al. (1972). Acta Cryst. B28, 135-139]. In poly $\left[\mu_{4}\right.$-fumarato-dimethanolcobalt(II) $],\left[\mathrm{Co}\left(\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{O}_{4}\right)\left(\mathrm{CH}_{4}-\right.\right.$ $\left.\mathrm{O})_{2}\right]_{n}$, (II), the Co^{2+} ions are octahedrally coordinated by four fumarate dianions and two methanol molecules, leading to a three-dimensional structure. The fumarate group is planar. The Co^{2+} ions and the fumarate dianions both lie on inversion centers. Additionally, the one-dimensional structure of catena-poly[[[tetraaquacobalt(II)]- μ_{2}-fumarato] monohydrate], $\left\{\left[\mathrm{Co}\left(\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{O}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{n}$, (III), was redetermined at a higher resolution, and the space group $C 2 / c$ was confirmed.

Comment

The octahedral coordination of Co^{2+} ions was first recognized by Werner (1893). To date, only two cobalt(II) fumarate complexes containing water molecules are known, namely cobalt(II) fumarate tetrahydrate [which is actually a tetraaquacobalt(II) fumarate (Konar et al., 2003; Zheng \& Xie, 2004; Padmanabhan et al., 2008)] and cobalt(II) fumarate pentahydrate [which is actually a tetraaquacobalt(II) fumarate monohydrate (Gupta \& Sinha, 1978; Konar et al., 2003; Marsh \& Spek, 2001; Porollo et al., 1997)]. Compounds in which Co^{2+} ions [and other bivalent metal(II) ions] are bonded to satu-
rated or unsaturated dicarboxylic acids, such as fumaric, maleic and succinic acid, have also been reported (e.g. Rao et al., 2004; Yaghi et al., 2003). In recent years, investigations of cobalt(II) fumarate phases containing additional organic ligands have been carried out (e.g. Chen et al., 2007; Konar et al., 2004; Liu et al., 2003; Ma et al., 2003; Manna et al., 2007; Zhang et al., 2004, 2005); ligands included benzimidazole, o-phenanthroline, pyrazine, and pyridine and its derivatives. These compounds form chain structures, layers or threedimensional frameworks. Saturated dicarboxylic acids tend to form coordination polymers with open three-dimensional frameworks. In contrast, unsaturated dicarboxylic acids lead to metal(II) hydrate complexes with predominantly chain structures.

The cobalt(II) fumarate tetra- and pentahydrates built from the Co^{2+} ion and the fumarate dianion crystallize in onedimensional polymeric chain structures (Gupta \& Sinha, 1978; Konar et al., 2003; Marsh \& Spek, 2001; Padmanabhan et al., 2008; Porollo et al., 1997; Zheng \& Xie, 2004). These chains are connected into a three-dimensional network by hydrogen bonds between water molecules and carboxylate groups.

We have prepared a novel cobalt(II) fumarate trihydrate and a cobalt(II) fumarate methanol disolvate and have also redetermined the structure of cobalt(II) fumarate pentahydrate.

(I)

(II)

(III)

The trihydrate, (I), forms two-dimensional layers parallel to the ($\overline{1} 11$) plane, as shown in Fig. 1. There are two symmetrically independent Co^{2+} ions, both on inversion centers. Atom Co 1 is coordinated by two water molecules $[\mathrm{Co} 1-\mathrm{O} 5=$ $2.147(2) \AA$ and four fumarate dianions $[\mathrm{Co} 1-\mathrm{O} 1=$

Figure 1
A layer of (I), parallel to the ($\overline{1} 11$) plane, showing the two symmetrically independent Co^{2+} ions and their coordination geometry. Hydrogen bonds are represented by dotted lines. [Symmetry codes: (i) $-x,-y+1,-z+1$; (ii) $x-1, y, z-1$; (iii) $-x+1,-y+2,-z+1$; (iv) $-x+1,-y+1,-z+2$; (v) $x+1$, $y, z+1$.]
2.0686 (18) \AA and $\mathrm{Co} 1-\mathrm{O} 4=2.1133$ (18) \AA], whereas atom Co 2 is surrounded by four water molecules [Co2-O6 = 2.042 (2) \AA and $\mathrm{Co} 2-\mathrm{O} 7=2.183(2) \AA]$ and two fumarate dianions $\left[\mathrm{Co} 2-\mathrm{O} 2=2.0755(18) \AA\right.$]. Both Co^{2+} ions are coordinated in a distorted octahedral geometry. Hence, cobalt(II) fumarate trihydrate is actually a mixture of a tetraaquacobalt(II) fumarate and a diaquacobalt(II) fumarate. The fumarate group has a trans conformation, with a $\mathrm{C} 1-$ $\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$ torsion angle of 175.6 (2) ${ }^{\circ}$. The carboxylate groups are rotated out of the plane; the angles between the plane of the central butene group and the planes of the two carboxylate groups are 32.0 (2) and $23.0(1)^{\circ}$. The fumarate dianions act as bridging ligands, linking the two symmetrically independent Co^{2+} ions to form layers parallel to the (111) plane. The layer is characterized by two different ring systems. There is a 14 -membered ring, consisting of two Co1 atoms and two fumarate dianions, and a 22-membered ring, consisting of two Co1 atoms, two Co2 atoms and four fumarate dianions. The three independent water molecules act as donors for six different $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1). Four of them connect the layers through an extensive hydrogen-bonding network to form a three-dimensional framework, as shown in Fig. 2. Within the layers the $\mathrm{O} 6-\mathrm{H} 6 B$ group is involved in a rather weak bifurcated hydrogen bond, while the O5-H5B group is involved in a rather strong hydrogen bond, as shown in Fig. 1. There is only one other report of a crystal structure of a metal(II) fumarate trihydrate, namely calcium(II) fumarate
trihydrate (Gupta et al., 1972). Its coordination geometry, however, is not similar to that of (I), and comprises an eightfold-coordinated Ca^{2+} ion surrounded by two independent and two symmetry-related water molecules and three symmetry-related fumarate dianions.

Poly[μ_{4}-fumarato-dimethanolcobalt(II)], (II), belongs to the group of cobalt(II) fumarates containing an additional organic ligand. The octahedrally coordinated Co^{2+} ion is located on a crystallographic inversion center. Each Co^{2+} ion is bonded to O atoms of four symmetry-related fumarate groups $[\mathrm{Co} 1-\mathrm{O} 1=2.1060(10) \AA$ and $\mathrm{Co} 1-\mathrm{O} 2=$ 2.1205 (9) A] and two O atoms of two symmetry-related

Figure 2
A packing diagram of (I), view direction [110], showing the layers connected via hydrogen bonds, leading to a three-dimensional structure. Hydrogen bonds are shown as dashed lines.
methanol molecules $[\mathrm{Co} 1-\mathrm{O} 3=2.0657(10) \AA$], as shown in Fig. 3. The methanol OH group donates an intramolecular hydrogen bond to carboxylate atom O2 (Table 2). The fumarate group is planar (the mean deviation from the plane is only $0.002 \AA$) and has a crystallographic inversion center at

Figure 3
A section of (II), showing the coordination geometry of the Co^{2+} ion. [Symmetry codes: (i) $-x+\frac{1}{2},-y+\frac{1}{2},-z+1$; (ii) $-x+1,-y,-z+2$; (iii) x, $-y, z-\frac{1}{2} ;$ (iv) $-x+\frac{1}{2}, y+\frac{1}{2},-z+\frac{3}{2}$.]

Figure 4

A packing diagram of (II), viewed along the c axis, showing the threedimensional structure.
the mid-point of the $\mathrm{C}=\mathrm{C}$ double bond. The Co^{2+} ions and fumarate dianions form a three-dimensional framework, as shown in Fig. 4. The structure is characterized by a system of 14 -membered rings, consisting of two Co^{2+} ions and two fumarate dianions. Larger 22 -membered rings consisting of four Co^{2+} ions and four fumarate dianions result in channels along the c-axis direction. The methanol ligands are located in these channels. The structure of (II) is clearly different from the structures of many two-dimensional coordination polymers that have been reported in the past few decades. Thus, the incorporation of a methanol ligand into cobalt(II) fumarate phases offers an interesting method for structural modification and the synthesis of further novel metal-organic framework structures.

There has been some confusion about the correct space group of the pentahydrate (III). The structure was originally determined by Gupta \& Sinha (1978) in the space group C2/c. It was redetermined by Porollo et al. (1997) and refined in the noncentrosymmetric space group C2. Marsh \& Spek (2001) showed that the coordinates of this structure could be transformed to $C 2 / c$. Two years later, the structure of (III) was redetermined by Konar et al. (2003) and refined in the noncentrosymmetric space group Cc. The present redetermination of the compound confirms the space group $C 2 / c$. The low R value (0.018) for the refinement in $C 2 / c$ shows that space groups $C 2$ and $C c$ can be excluded. The Co^{2+} ion is located on a twofold axis and has an octahedral coordination. Two cis positions are occupied by two fumarate groups and the other positions are occupied by four water molecules. The Co^{2+} ions and fumarate dianions form one-dimensional zigzag chains along the c-axis direction, as shown in Fig. 5. These chains are connected by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 3) into a three-dimensional network, as shown in Fig. 6. There is a crystallographic inversion center at the mid-point of the $\mathrm{C}=\mathrm{C}$ double bond of the fumarate group. The angle between the plane of the central butene group and the planes of the two

Figure 5
The chain structure of (III), showing the coordination geometry of the Co^{2+} ion. Hydrogen bonds are represented by dotted lines. [Symmetry codes: (i) $-x+1, y,-z+\frac{1}{2}$; (ii) $-x+\frac{3}{2},-y+\frac{1}{2},-z+1$.] The uncoordinated water molecule is not shown but lies between the chains.

Figure 6
A packing diagram of (III), viewed along the a axis, showing the threedimensional hydrogen-bonding system.
carboxylate groups is $25.9(1)^{\circ}$. A one-dimensional structure has also been observed in the crystal structure of cobalt(II) fumarate tetrahydrate (Konar et al., 2003). There the fumarate groups are in trans positions with respect to the Co^{2+} ions, resulting in almost linear chains.

The site symmetries of the cobalt and fumarate ions for all four compounds are given in Table 4. The compounds reported demonstrate all three of the types of frameworks (one-, two- and three-dimensional) that are possible for these structures.

Experimental

A methanol solution (50 ml) containing fumaric acid $(0.93 \mathrm{~g}, 8 \mathrm{mmol})$ was heated at 333 K for 1 h with stirring and then left to cool to room temperature. After the addition of a methanol solution (50 ml) containing $\mathrm{Co}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(1 \mathrm{~g}, 4 \mathrm{mmol})$, a magenta-colored powder precipitated. The precipitate was filtered off, washed with methanol and dried for 3 h at 323 K . The powder pattern of the precipitate and the calculated powder pattern from the single-crystal structure of cobalt(II) fumarate methanol disolvate were compared and proved to be congruent. Red crystals of the title compounds were prepared by vapor diffusion, using water as solvent in all three cases: the antisolvents used for (I), (II) and (III) were acetone, methanol and ethanol, respectively. Crystals of (I) formed after four days, while crystals of compounds (II) and (III) formed after one week.

Data collection

Siemens SMART 1K CCD diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 2000)
$T_{\text {min }}=0.575, T_{\text {max }}=0.729$
6668 measured reflections 2411 independent reflections 1660 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.044$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.091$
$S=1.00$
2411 reflections

145 parameters

All H-atom parameters refined
$\Delta \rho_{\max }=1.07 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.94 \mathrm{e} \mathrm{A}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$) for (I).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots \cdot$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 5-\mathrm{H} 5 A \cdots \mathrm{O} 2^{\text {vi }}$	0.79 (6)	1.97 (6)	2.755 (3)	170 (4)
$\mathrm{O} 5-\mathrm{H} 5 \mathrm{~B} \cdots \mathrm{O}^{\text {ii }}$	0.76 (4)	1.87 (4)	2.620 (3)	167 (4)
$\mathrm{O} 6-\mathrm{H} 6 A \cdots \mathrm{O} 3^{\text {vi }}$	0.87 (4)	1.83 (4)	2.694 (3)	175 (4)
O6-H6B \cdots O1	0.79 (5)	2.20 (5)	2.833 (3)	138 (4)
$\mathrm{O} 6-\mathrm{H} 6 B \cdots \mathrm{O} 4^{\text {ii }}$	0.79 (5)	2.30 (5)	2.957 (3)	142 (4)
$\mathrm{O} 7-\mathrm{H} 7 A \cdots \mathrm{O} 4{ }^{\text {vii }}$	0.76 (4)	2.18 (4)	2.936 (4)	175 (4)
O7-H7B $\cdots \mathrm{O}^{\text {i }}$	0.80 (5)	2.17 (5)	2.971 (4)	176 (4)

Symmetry codes: (i) $-x,-y+1,-z+1$; (ii) $x-1, y, z-1$; (vi) $-x+1,-y+1$,
$-z+1$; (vii) $-x+1,-y+2,-z+2$.

Compound (II)

Crystal data
$\left[\mathrm{Co}\left(\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{O}_{4}\right)\left(\mathrm{CH}_{4} \mathrm{O}\right)_{2}\right]$
$M_{r}=237.07$
Monoclinic, $C 2 / c$
$a=15.547$ (4) \AA
$b=7.020(2) \AA$
$c=8.2270(13) \AA$
$\beta=115.73(2)^{\circ}$

Data collection

Siemens SMART 1K CCD diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 2000)
$T_{\text {min }}=0.530, T_{\text {max }}=0.602$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.023$
$w R\left(F^{2}\right)=0.061$
$S=1.01$
1611 reflections
70 parameters
$V=808.9(4) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=2.12 \mathrm{~mm}^{-1}$
$T=165 \mathrm{~K}$
$0.40 \times 0.26 \times 0.24 \mathrm{~mm}$
$0.40 \times 0.26 \times 0.24 \mathrm{~mm}$

7132 measured reflections 1611 independent reflections 1402 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.025$

Table 2
Hydrogen-bond geometry $\left(\AA^{\circ},^{\circ}\right)$ for (II).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O3-H3A $\cdots \mathrm{O} 2$	$0.84(2)$	$1.85(2)$	$2.6485(15)$	$159(2)$
C2-H2A $\cdots 1^{\mathrm{v}}$	0.91 (2)	2.57 (2)	$3.1796(18)$	$125.4(17)$
Symmetry code: (v) $x,-y, z+\frac{1}{2}$.				

Symmetry code: (v) $x,-y, z+\frac{1}{2}$.

Compound (III)

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{O}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=263.07$
Monoclinic, $C 2 / c$
$a=5.2561$ (11) A
$b=13.145$ (2) \AA
$c=13.321$ (3) \AA
$\beta=95.188(16)^{\circ}$

Data collection

Siemens SMART 1K CCD diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 2000)
$T_{\text {min }}=0.301, T_{\text {max }}=0.386$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.018$
$w R\left(F^{2}\right)=0.049$
$S=1.04$
1815 reflections
$V=916.6(3) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=1.90 \mathrm{~mm}^{-1}$
$T=166 \mathrm{~K}$
$0.60 \times 0.55 \times 0.50 \mathrm{~mm}$

8327 measured reflections 1815 independent reflections 1771 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.025$

90 parameters
All H -atom parameters refined
$\Delta \rho_{\max }=0.56$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.30 \mathrm{e}^{-3}$

Table 3
Hydrogen-bond geometry ($\AA \AA^{\circ}$) for (III).

$D-\mathrm{H} \cdots A$	D-H	H $\cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3-\mathrm{H} 3 A \cdots \mathrm{O} 4^{\text {iii }}$	0.809 (16)	2.121 (16)	2.9306 (11)	178.8 (17)
$\mathrm{O} 3-\mathrm{H} 3 \mathrm{~B} \cdots \mathrm{O}^{\text {i }}$	0.80 (2)	1.91 (2)	2.6481 (11)	153 (2)
$\mathrm{O} 4-\mathrm{H} 4 A \cdots \mathrm{O} 5^{\text {iv }}$	0.797 (18)	1.929 (18)	2.7062 (12)	164.8 (17)
$\mathrm{O} 4-\mathrm{H} 4 \mathrm{~B} \cdots \mathrm{O}^{\text {v }}$	0.844 (18)	1.879 (18)	2.7098 (11)	167.6 (16)
$\mathrm{O} 5-\mathrm{H} 5 A \cdots \mathrm{O} 1$	0.761 (16)	1.958 (16)	2.7122 (10)	171.4 (17)

Symmetry codes: (i) $-x+1, y,-z+\frac{1}{2}$; (iii) $x+1, y, z$; (iv) $x-\frac{1}{2}, y+\frac{1}{2}, z$; (v) $x,-y+1$, $z-\frac{1}{2}$.

Table 4
Site symmetries for cobalt(II) fumarate trihydrate, (I), methanol disolvate, (II), pentahydrate, (III), and tetrahydrate (see Comment).

	Trihydrate	Methanol disolvate	Pentahydrate	Tetrahydrate
Space group	$P \overline{1}$	$C 2 / c$	$C 2 / c$	$P 2_{1} / c$
Z	$\frac{2}{1}$	$\frac{4}{1}$	4	4
Co^{2+}	$\overline{1}, \overline{1}^{a}$	$\overline{1}$	2	$\overline{1}$
Fumarate	1	$\overline{1}$	1	
Cobalt(II) fumarate topology	Two-dimen- sional	Three-dimen- sional	One-dimen- sional	One-dimen- sional

Note: (a) two symmetry-independent Co^{2+} ions.

The H atoms of the methyl group of (II) were constrained $[\mathrm{C}-\mathrm{H}=$ $0.98 \AA$ and $\left.U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})\right]$. All other H atoms in (I), (II) and
(III) were located in difference Fourier syntheses and were freely refined $[\mathrm{C}-\mathrm{H}=0.93$ (3) and $1.00(3), 0.91$ (2), and $0.928(14) \AA$, respectively]. The crystal of (I) was twinned. The twin relations were $h_{\mathrm{twin}}=h, k_{\mathrm{twin}}=-0.115 h-k$ and $l_{\mathrm{twin}}=-0.870 h-l$. The twin fraction refined to 0.241 (4).

For all compounds, data collection: SMART (Siemens, 1995); cell refinement: SMART; data reduction: SAINT (Siemens, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

The authors thank Edith Alig and Lothar Fink (University of Frankfurt) for measurement of the powder patterns and scientific discussions.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FG3108). Services for accessing these data are described at the back of the journal.

References

Chen, B., Ma, S., Zapata, F., Fronczek, F. R., Lobkovsky, E. B. \& Zhou, H.-C. (2007). Inorg. Chem. 46, 1233-1236.

Gupta, M. P., Prasad, S. M., Sahu, R. G. \& Sahu, B. N. (1972). Acta Cryst. B28, 135-139.
Gupta, M. P. \& Sinha, S. K. (1978). Indian J. Phys. Sect. A, 52, 363-364.
Konar, S., Zangrando, E. \& Chaudhuri, N. R. (2003). Inorg. Chim. Acta, 355, 264-271.
Konar, S., Zangrando, E., Drew, M. G. B., Ribas, J. \& Chaudhuri, N. R. (2004). Dalton Trans. pp. 260-266.
Liu, Y., Xu, D.-J., Lin, D.-D. \& Yin, K.-L. (2003). Acta Cryst. E59, m753m755.
Ma, J.-F., Yang, J. \& Liu, J.-F. (2003). Acta Cryst. C59, m304-m306.
Manna, S. C., Zangrando, E., Ribas, J. \& Chaudhuri, N. R. (2007). Dalton Trans. pp. 1383-1391.
Marsh, R. E. \& Spek, A. L. (2001). Acta Cryst. B57, 800-805.
Padmanabhan, M., Joseph, J. C., Thirumurunga, A. \& Rao, C. N. R. (2008). Dalton Trans. pp. 2809-2811.
Porollo, N. P., Aliev, Z. G., Dzhardimalieva, G. I., Ivleva, I. N., Uflyand, I. E., Pomogailo, A. D. \& Ovanesyan, N. S. (1997). Russ. Chem. Bull. 46, 362370.

Rao, C. N. R., Natarajan, S. \& Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. 43, 1466-1496.
Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Siemens (1995). SAINT and SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Werner, A. (1893). Z. Anorg. Allg. Chem. 3, 267-330.
Yaghi, O. M., O'Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. \& Kim, J. (2003). Nature (London), 423, 705-714.

Zhang, K.-L., Wang, Z., Huang, H., Zhu, Y. \& You, X.-Z. (2004). J. Mol. Struct. 693, 193-197.
Zhang, K.-L., Xu, Y. \& You, X.-Z. (2005). Transition Met. Chem. 30, 376-379.
Zheng, Y.-Q. \& Xie, H.-Z. (2004). J. Solid State Chem. 177, 1352-1358.

